## root / include / cnumgen.h @ aeae20a1

History | View | Annotate | Download (13.3 KB)

1 | 01873262 | Georg Kunz | ```
//==========================================================================
``` |
---|---|---|---|

2 | ```
// DISTRIB.H
``` |
||

3 | ```
//
``` |
||

4 | ```
// OMNeT++/OMNEST
``` |
||

5 | ```
// Discrete System Simulation in C++
``` |
||

6 | ```
//
``` |
||

7 | ```
// Random variate generation class
``` |
||

8 | ```
//
``` |
||

9 | ```
//
``` |
||

10 | ```
//==========================================================================
``` |
||

11 | |||

12 | |||

13 | ```
#ifndef __CNUMGEN_H_
``` |
||

14 | ```
#define __CNUMGEN_H_
``` |
||

15 | |||

16 | #include "simkerneldefs.h" |
||

17 | #include "random.h" |
||

18 | |||

19 | class cMersenneTwister; |
||

20 | |||

21 | class SIM_API cNumberGenerator : public cObject |
||

22 | { |
||

23 | ```
private:
``` |
||

24 | |||

25 | ```
int nrRngs;
``` |
||

26 | cRNG** rngs; |
||

27 | |||

28 | ```
/**
``` |
||

29 | ```
* internal
``` |
||

30 | ```
*/
``` |
||

31 | double gamma_Marsaglia2000(double a, int rng); |
||

32 | |||

33 | ```
/**
``` |
||

34 | ```
* internal
``` |
||

35 | ```
*/
``` |
||

36 | double gamma_MarsagliaTransf(double alpha, int rng); |
||

37 | |||

38 | ```
/**
``` |
||

39 | ```
* internal
``` |
||

40 | ```
*/
``` |
||

41 | double unit_normal(int rng); |
||

42 | |||

43 | ```
/**
``` |
||

44 | ```
* internal
``` |
||

45 | ```
*/
``` |
||

46 | void checkBounds(int rngId); |
||

47 | |||

48 | ```
public:
``` |
||

49 | |||

50 | ```
/**
``` |
||

51 | ```
* constructor
``` |
||

52 | ```
*/
``` |
||

53 | ```
cNumberGenerator(unsigned nrNumGens);
``` |
||

54 | |||

55 | ```
/**
``` |
||

56 | ```
* destructor
``` |
||

57 | ```
*/
``` |
||

58 | virtual ~cNumberGenerator(); |
||

59 | |||

60 | ```
/**
``` |
||

61 | ```
* @name Continuous distributions
``` |
||

62 | ```
*
``` |
||

63 | ```
* @ingroup RandomNumbers
``` |
||

64 | ```
*/
``` |
||

65 | ```
//@{
``` |
||

66 | ```
/**
``` |
||

67 | ```
* Returns a random variate with uniform distribution in the range [a,b).
``` |
||

68 | ```
*
``` |
||

69 | ```
* @param a, b the interval, a<b
``` |
||

70 | ```
* @param rng the underlying random number generator
``` |
||

71 | ```
*/
``` |
||

72 | double uniform(double a, double b, int =0); |
||

73 | |||

74 | ```
/**
``` |
||

75 | ```
* Returns a random variate from the exponential distribution with the
``` |
||

76 | ```
* given mean (that is, with parameter lambda=1/mean).
``` |
||

77 | ```
*
``` |
||

78 | ```
* @param mean mean value
``` |
||

79 | ```
* @param rng the underlying random number generator
``` |
||

80 | ```
*/
``` |
||

81 | double exponential(double mean, int rng=0); |
||

82 | |||

83 | ```
/**
``` |
||

84 | ```
* Returns a random variate from the normal distribution with the given mean
``` |
||

85 | ```
* and standard deviation.
``` |
||

86 | ```
*
``` |
||

87 | ```
* @param mean mean of the normal distribution
``` |
||

88 | ```
* @param stddev standard deviation of the normal distribution
``` |
||

89 | ```
* @param rng the underlying random number generator
``` |
||

90 | ```
*/
``` |
||

91 | double normal(double mean, double stddev, int rng=0); |
||

92 | |||

93 | ```
/**
``` |
||

94 | ```
* Normal distribution truncated to nonnegative values.
``` |
||

95 | ```
* It is implemented with a loop that discards negative values until
``` |
||

96 | ```
* a nonnegative one comes. This means that the execution time is not bounded:
``` |
||

97 | ```
* a large negative mean with much smaller stddev is likely to result
``` |
||

98 | ```
* in a large number of iterations.
``` |
||

99 | ```
*
``` |
||

100 | ```
* The mean and stddev parameters serve as parameters to the normal
``` |
||

101 | ```
* distribution <i>before</i> truncation. The actual random variate returned
``` |
||

102 | ```
* will have a different mean and standard deviation.
``` |
||

103 | ```
*
``` |
||

104 | ```
* @param mean mean of the normal distribution
``` |
||

105 | ```
* @param stddev standard deviation of the normal distribution
``` |
||

106 | ```
* @param rng the underlying random number generator
``` |
||

107 | ```
*/
``` |
||

108 | double truncnormal(double mean, double stddev, int rng=0); |
||

109 | |||

110 | ```
/**
``` |
||

111 | ```
* Returns a random variate from the gamma distribution with parameters
``` |
||

112 | ```
* alpha>0, theta>0. Alpha is known as the "shape" parameter, and theta
``` |
||

113 | ```
* as the "scale" parameter.
``` |
||

114 | ```
*
``` |
||

115 | ```
* Some sources in the literature use the inverse scale parameter
``` |
||

116 | ```
* beta = 1 / theta, called the "rate" parameter. Various other notations
``` |
||

117 | ```
* can be found in the literature; our usage of (alpha,theta) is consistent
``` |
||

118 | ```
* with Wikipedia and Mathematica (Wolfram Research).
``` |
||

119 | ```
*
``` |
||

120 | ```
* Gamma is the generalization of the Erlang distribution for non-integer
``` |
||

121 | ```
* k values, which becomes the alpha parameter. The chi-square distribution
``` |
||

122 | ```
* is a special case of the gamma distribution.
``` |
||

123 | ```
*
``` |
||

124 | ```
* For alpha=1, Gamma becomes the exponential distribution with mean=theta.
``` |
||

125 | ```
*
``` |
||

126 | ```
* The mean of this distribution is alpha*theta, and variance is alpha*theta<sup>2</sup>.
``` |
||

127 | ```
*
``` |
||

128 | ```
* Generation: if alpha=1, it is generated as exponential(theta).
``` |
||

129 | ```
*
``` |
||

130 | ```
* For alpha>1, we make use of the acceptance-rejection method in
``` |
||

131 | ```
* "A Simple Method for Generating Gamma Variables", George Marsaglia and
``` |
||

132 | ```
* Wai Wan Tsang, ACM Transactions on Mathematical Software, Vol. 26, No. 3,
``` |
||

133 | ```
* September 2000.
``` |
||

134 | ```
*
``` |
||

135 | ```
* The alpha<1 case makes use of the alpha>1 algorithm, as suggested by the
``` |
||

136 | ```
* above paper.
``` |
||

137 | ```
*
``` |
||

138 | ```
* @remark the name gamma_d is chosen to avoid ambiguity with
``` |
||

139 | ```
* a function of the same name
``` |
||

140 | ```
*
``` |
||

141 | ```
* @param alpha >0 the "shape" parameter
``` |
||

142 | ```
* @param theta >0 the "scale" parameter
``` |
||

143 | ```
* @param rng the underlying random number generator
``` |
||

144 | ```
*/
``` |
||

145 | double gamma_d(double alpha, double theta, int rng=0); |
||

146 | |||

147 | ```
/**
``` |
||

148 | ```
* Returns a random variate from the beta distribution with parameters
``` |
||

149 | ```
* alpha1, alpha2.
``` |
||

150 | ```
*
``` |
||

151 | ```
* Generation is using relationship to Gamma distribution: if Y1 has gamma
``` |
||

152 | ```
* distribution with alpha=alpha1 and beta=1 and Y2 has gamma distribution
``` |
||

153 | ```
* with alpha=alpha2 and beta=2, then Y = Y1/(Y1+Y2) has beta distribution
``` |
||

154 | ```
* with parameters alpha1 and alpha2.
``` |
||

155 | ```
*
``` |
||

156 | ```
* @param alpha1, alpha2 >0
``` |
||

157 | ```
* @param rng the underlying random number generator
``` |
||

158 | ```
*/
``` |
||

159 | double beta(double alpha1, double alpha2, int rng=0); |
||

160 | |||

161 | ```
/**
``` |
||

162 | ```
* Returns a random variate from the Erlang distribution with k phases
``` |
||

163 | ```
* and mean mean.
``` |
||

164 | ```
*
``` |
||

165 | ```
* This is the sum of k mutually independent random variables, each with
``` |
||

166 | ```
* exponential distribution. Thus, the kth arrival time
``` |
||

167 | ```
* in the Poisson process follows the Erlang distribution.
``` |
||

168 | ```
*
``` |
||

169 | ```
* Erlang with parameters m and k is gamma-distributed with alpha=k
``` |
||

170 | ```
* and beta=m/k.
``` |
||

171 | ```
*
``` |
||

172 | ```
* Generation makes use of the fact that exponential distributions
``` |
||

173 | ```
* sum up to Erlang.
``` |
||

174 | ```
*
``` |
||

175 | ```
* @param k number of phases, k>0
``` |
||

176 | ```
* @param mean >0
``` |
||

177 | ```
* @param rng the underlying random number generator
``` |
||

178 | ```
*/
``` |
||

179 | double erlang_k(unsigned int k, double mean, int rng=0); |
||

180 | |||

181 | ```
/**
``` |
||

182 | ```
* Returns a random variate from the chi-square distribution
``` |
||

183 | ```
* with k degrees of freedom. The chi-square distribution arises
``` |
||

184 | ```
* in statistics. If Yi are k independent random variates from the normal
``` |
||

185 | ```
* distribution with unit variance, then the sum-of-squares (sum(Yi^2))
``` |
||

186 | ```
* has a chi-square distribution with k degrees of freedom.
``` |
||

187 | ```
*
``` |
||

188 | ```
* The expected value of this distribution is k. Chi_square with parameter
``` |
||

189 | ```
* k is gamma-distributed with alpha=k/2, beta=2.
``` |
||

190 | ```
*
``` |
||

191 | ```
* Generation is using relationship to gamma distribution.
``` |
||

192 | ```
*
``` |
||

193 | ```
* @param k degrees of freedom, k>0
``` |
||

194 | ```
* @param rng the underlying random number generator
``` |
||

195 | ```
*/
``` |
||

196 | double chi_square(unsigned int k, int rng=0); |
||

197 | |||

198 | ```
/**
``` |
||

199 | ```
* Returns a random variate from the student-t distribution with
``` |
||

200 | ```
* i degrees of freedom. If Y1 has a normal distribution and Y2 has a chi-square
``` |
||

201 | ```
* distribution with k degrees of freedom then X = Y1 / sqrt(Y2/k)
``` |
||

202 | ```
* has a student-t distribution with k degrees of freedom.
``` |
||

203 | ```
*
``` |
||

204 | ```
* Generation is using relationship to gamma and chi-square.
``` |
||

205 | ```
*
``` |
||

206 | ```
* @param i degrees of freedom, i>0
``` |
||

207 | ```
* @param rng the underlying random number generator
``` |
||

208 | ```
*/
``` |
||

209 | double student_t(unsigned int i, int rng=0); |
||

210 | |||

211 | ```
/**
``` |
||

212 | ```
* Returns a random variate from the Cauchy distribution (also called
``` |
||

213 | ```
* Lorentzian distribution) with parameters a,b where b>0.
``` |
||

214 | ```
*
``` |
||

215 | ```
* This is a continuous distribution describing resonance behavior.
``` |
||

216 | ```
* It also describes the distribution of horizontal distances at which
``` |
||

217 | ```
* a line segment tilted at a random angle cuts the x-axis.
``` |
||

218 | ```
*
``` |
||

219 | ```
* Generation uses inverse transform.
``` |
||

220 | ```
*
``` |
||

221 | ```
* @param a
``` |
||

222 | ```
* @param b b>0
``` |
||

223 | ```
* @param rng the underlying random number generator
``` |
||

224 | ```
*/
``` |
||

225 | double cauchy(double a, double b, int rng=0); |
||

226 | |||

227 | ```
/**
``` |
||

228 | ```
* Returns a random variate from the triangular distribution with parameters
``` |
||

229 | ```
* a <= b <= c.
``` |
||

230 | ```
*
``` |
||

231 | ```
* Generation uses inverse transform.
``` |
||

232 | ```
*
``` |
||

233 | ```
* @param a, b, c a <= b <= c
``` |
||

234 | ```
* @param rng the underlying random number generator
``` |
||

235 | ```
*/
``` |
||

236 | double triang(double a, double b, double c, int rng=0); |
||

237 | |||

238 | ```
/**
``` |
||

239 | ```
* Returns a random variate from the lognormal distribution with "scale"
``` |
||

240 | ```
* parameter m and "shape" parameter w. m and w correspond to the parameters
``` |
||

241 | ```
* of the underlying normal distribution (m: mean, w: standard deviation.)
``` |
||

242 | ```
*
``` |
||

243 | ```
* Generation is using relationship to normal distribution.
``` |
||

244 | ```
*
``` |
||

245 | ```
* @param m "scale" parameter, m>0
``` |
||

246 | ```
* @param w "shape" parameter, w>0
``` |
||

247 | ```
* @param rng the underlying random number generator
``` |
||

248 | ```
*/
``` |
||

249 | inline double lognormal(double m, double w, int rng=0) |
||

250 | { |
||

251 | ```
return exp(normal(m, w, rng));
``` |
||

252 | } |
||

253 | |||

254 | ```
/**
``` |
||

255 | ```
* Returns a random variate from the Weibull distribution with parameters
``` |
||

256 | ```
* a, b > 0, where a is the "scale" parameter and b is the "shape" parameter.
``` |
||

257 | ```
* Sometimes Weibull is given with alpha and beta parameters, then alpha=b
``` |
||

258 | ```
* and beta=a.
``` |
||

259 | ```
*
``` |
||

260 | ```
* The Weibull distribution gives the distribution of lifetimes of objects.
``` |
||

261 | ```
* It was originally proposed to quantify fatigue data, but it is also used
``` |
||

262 | ```
* in reliability analysis of systems involving a "weakest link," e.g.
``` |
||

263 | ```
* in calculating a device's mean time to failure.
``` |
||

264 | ```
*
``` |
||

265 | ```
* When b=1, Weibull(a,b) is exponential with mean a.
``` |
||

266 | ```
*
``` |
||

267 | ```
* Generation uses inverse transform.
``` |
||

268 | ```
*
``` |
||

269 | ```
* @param a the "scale" parameter, a>0
``` |
||

270 | ```
* @param b the "shape" parameter, b>0
``` |
||

271 | ```
* @param rng the underlying random number generator
``` |
||

272 | ```
*/
``` |
||

273 | double weibull(double a, double b, int rng=0); |
||

274 | |||

275 | ```
/**
``` |
||

276 | ```
* Returns a random variate from the shifted generalized Pareto distribution.
``` |
||

277 | ```
*
``` |
||

278 | ```
* Generation uses inverse transform.
``` |
||

279 | ```
*
``` |
||

280 | ```
* @param a,b the usual parameters for generalized Pareto
``` |
||

281 | ```
* @param c shift parameter for left-shift
``` |
||

282 | ```
* @param rng the underlying random number generator
``` |
||

283 | ```
*/
``` |
||

284 | double pareto_shifted(double a, double b, double c, int rng=0); |
||

285 | |||

286 | ```
//@}
``` |
||

287 | |||

288 | ```
/**
``` |
||

289 | ```
* @name Discrete distributions
``` |
||

290 | ```
*
``` |
||

291 | ```
* @ingroup RandomNumbers
``` |
||

292 | ```
*/
``` |
||

293 | ```
//@{
``` |
||

294 | |||

295 | ```
/**
``` |
||

296 | ```
* Returns a random integer with uniform distribution in the range [a,b],
``` |
||

297 | ```
* inclusive. (Note that the function can also return b.)
``` |
||

298 | ```
*
``` |
||

299 | ```
* @param a, b the interval, a<b
``` |
||

300 | ```
* @param rng the underlying random number generator
``` |
||

301 | ```
*/
``` |
||

302 | int intuniform(int a, int b, int rng=0); |
||

303 | |||

304 | ```
/**
``` |
||

305 | ```
* Returns the result of a Bernoulli trial with probability p,
``` |
||

306 | ```
* that is, 1 with probability p and 0 with probability (1-p).
``` |
||

307 | ```
*
``` |
||

308 | ```
* Generation is using elementary look-up.
``` |
||

309 | ```
*
``` |
||

310 | ```
* @param p 0=<p<=1
``` |
||

311 | ```
* @param rng the underlying random number generator
``` |
||

312 | ```
*/
``` |
||

313 | inline int bernoulli(double p, int rng=0) |
||

314 | { |
||

315 | ```
double U = genk_dblrand(rng);
``` |
||

316 | return (p > U) ? 1 : 0; |
||

317 | } |
||

318 | |||

319 | ```
/**
``` |
||

320 | ```
* Returns a random integer from the binomial distribution with
``` |
||

321 | ```
* parameters n and p, that is, the number of successes in n independent
``` |
||

322 | ```
* trials with probability p.
``` |
||

323 | ```
*
``` |
||

324 | ```
* Generation is using the relationship to Bernoulli distribution (runtime
``` |
||

325 | ```
* is proportional to n).
``` |
||

326 | ```
*
``` |
||

327 | ```
* @param n n>=0
``` |
||

328 | ```
* @param p 0<=p<=1
``` |
||

329 | ```
* @param rng the underlying random number generator
``` |
||

330 | ```
*/
``` |
||

331 | int binomial(int n, double p, int rng=0); |
||

332 | |||

333 | ```
/**
``` |
||

334 | ```
* Returns a random integer from the geometric distribution with parameter p,
``` |
||

335 | ```
* that is, the number of independent trials with probability p until the
``` |
||

336 | ```
* first success.
``` |
||

337 | ```
*
``` |
||

338 | ```
* This is the n=1 special case of the negative binomial distribution.
``` |
||

339 | ```
*
``` |
||

340 | ```
* Generation uses inverse transform.
``` |
||

341 | ```
*
``` |
||

342 | ```
* @param p 0<p<=1
``` |
||

343 | ```
* @param rng the underlying random number generator
``` |
||

344 | ```
*/
``` |
||

345 | int geometric(double p, int rng=0); |
||

346 | |||

347 | ```
/**
``` |
||

348 | ```
* Returns a random integer from the negative binomial distribution with
``` |
||

349 | ```
* parameters n and p, that is, the number of failures occurring before
``` |
||

350 | ```
* n successes in independent trials with probability p of success.
``` |
||

351 | ```
*
``` |
||

352 | ```
* Generation is using the relationship to geometric distribution (runtime is
``` |
||

353 | ```
* proportional to n).
``` |
||

354 | ```
*
``` |
||

355 | ```
* @param n n>=0
``` |
||

356 | ```
* @param p 0<p<1
``` |
||

357 | ```
* @param rng the underlying random number generator
``` |
||

358 | ```
*/
``` |
||

359 | int negbinomial(int n, double p, int rng=0); |
||

360 | |||

361 | |||

362 | ```
/**
``` |
||

363 | ```
* Returns a random integer from the Poisson distribution with parameter lambda,
``` |
||

364 | ```
* that is, the number of arrivals over unit time where the time between
``` |
||

365 | ```
* successive arrivals follow exponential distribution with parameter lambda.
``` |
||

366 | ```
*
``` |
||

367 | ```
* Lambda is also the mean (and variance) of the distribution.
``` |
||

368 | ```
*
``` |
||

369 | ```
* Generation method depends on value of lambda:
``` |
||

370 | ```
*
``` |
||

371 | ```
* - 0<lambda<=30: count number of events
``` |
||

372 | ```
* - lambda>30: Acceptance-Rejection due to Atkinson (see Banks, page 166)
``` |
||

373 | ```
*
``` |
||

374 | ```
* @param lambda > 0
``` |
||

375 | ```
* @param rng the underlying random number generator
``` |
||

376 | ```
*/
``` |
||

377 | int poisson(double lambda, int rng=0); |
||

378 | |||

379 | ```
/**
``` |
||

380 | ```
* Produces random integer in range [0,r) using generator 0.
``` |
||

381 | ```
*/
``` |
||

382 | long intrand(long r); |
||

383 | |||

384 | ```
/**
``` |
||

385 | ```
* Produces random double in range [0,1) using generator 0.
``` |
||

386 | ```
*/
``` |
||

387 | ```
double dblrand();
``` |
||

388 | ```
//@}
``` |
||

389 | |||

390 | ```
/**
``` |
||

391 | ```
* @name Compatibility
``` |
||

392 | ```
*
``` |
||

393 | ```
* @ingroup RandomNumbers
``` |
||

394 | ```
*/
``` |
||

395 | ```
//@{
``` |
||

396 | ```
/**
``` |
||

397 | ```
* DEPRECATED: use uniform() instead.
``` |
||

398 | ```
*/
``` |
||

399 | double genk_uniform(double gen_nr, double a, double b); |
||

400 | |||

401 | ```
/**
``` |
||

402 | ```
* DEPRECATED: use intuniform() instead.
``` |
||

403 | ```
*/
``` |
||

404 | double genk_intuniform(double gen_nr, double a, double b); |
||

405 | |||

406 | ```
/**
``` |
||

407 | ```
* DEPRECATED: use exponential() instead.
``` |
||

408 | ```
*/
``` |
||

409 | double genk_exponential(double gen_nr, double p); |
||

410 | |||

411 | ```
/**
``` |
||

412 | ```
* DEPRECATED: use normal() instead.
``` |
||

413 | ```
*/
``` |
||

414 | double genk_normal(double gen_nr, double mean, double variance); |
||

415 | |||

416 | ```
/**
``` |
||

417 | ```
* DEPRECATED: use truncnormal() instead.
``` |
||

418 | ```
*/
``` |
||

419 | double genk_truncnormal(double gen_nr, double mean, double variance); |
||

420 | ```
//@}
``` |
||

421 | }; |
||

422 | |||

423 | #endif // __CNUMGEN_H_ |